
eMoflon@TTC2013: Integrating Java Source Code with FlowGraph Models

Anthony Anjorin and Marius Lauder

Real-Time Systems Lab
Technische Universität Darmstadt (Germany)

This document describes very briefly all actions that are required to specify and apply a bidirectional model transformation
based on Triple Graph Grammars between Java source code and FlowGraph models. All information regarding
details of the specification is provided in an additional paper, submitted to the 2013 Transformation Tool Contest
(http://planet-sl.org/ttc2013/).

For further questions please contact us via contact@moflon.org

Specifying and using a TGG can be separated into two distinct steps:

(i) Specify the model integration on the metamodel level
(ii) Actually apply the derived forward/backward model transformation to an existing

input model in a round-trip manner

In the following, both steps are briefly described to demonstrate, from a user’s point of view, how
bidirectional model transformation with TGGs can be achieved with eMoflon.

This introduction is by no means a complete introduction to TGGs or our tool eMoflon. If you are
interested in additional details regarding eMoflon and its capabilities regarding metamodeling
and (uni-/bidirectional) model transformations we refer to our extensive tutorial:
www.emoflon.org

(i) Specifying a TGG and deriving the unidirectional operational rules

1. Start Eclipse (the workspace is already preconfigured).
2. Explore the Eclipse workspace:

a. Project FlowGraphs contains the metamodels and the TGG specification.
b. Projects flowgraph, and JavaToFlowGraph are placeholders for the language

definitions that will be generated from the specified metamodels and TGG.
c. The closed project ttc-2013-flowgraphs-case contains all information that

was provided by the originators of the case study.
3. Open the FlowGraphs.eap file by double-clicking it

a. Enterprise Architect Lite (EA) opens and allows viewing all details of the
metamodels and TGG specification in a read-only fashion.

b. Explore the metamodels which define the relevant structures for the integration.

http://planet-sl.org/ttc2013/
mailto:contact@moflon.org
http://www.emoflon.org/

c. Explore the integration rules by navigating to the Rules package in the
JavaToFlowGraph folder. Here you will find all TGG rules that have been
defined to integrate Java source code- and FlowGraph instances.

4. As eMoflon is a fully generative approach, you have to export all information from EA to
the Eclipse workspace where code generation will be performed: Right-click on any of the
elements and select Extensions  MOFLON::Ecore Addin  Export All to
Workspace.

5. Return to Eclipse and optionally check that all gen folders are empty.
6. Refresh FlowGraphs (select Refresh from the context menu). The workspace should

now start building automatically.
7. Hand-written Java code to implement specific details of the transformation (e.g., user

defined constraints) has been placed in the injection folders of the projects flowgraph
and JavaToFlowGraph. Such code is merged automatically with generated code during
the code generation process and, therefore, enriches generated code with additional
functionality without comprising a clear separation.

(ii) Integration user part for applying model integration rules:

1. Navigate to the JavaToFlowGraph project and inspect the existing exemplary input
models in the instances/in folder.

2. These models are going to be used as input for forward and backward transformation.
3. Right-click on src/org.moflon/tie/TGGMain.java and choose Run As  Java

Application (the corresponding Java source code for executing a model transformation
with these input models was generated automatically).

4. The transformations are performed and additional models are persisted in the
instances/out folder (results of the round-trip starting beginning and ending with
Java source code that should be semantically equivalent). Further models, such as the
correspondence models are persisted in the folders instances/Test0.java and
instances/Test1.java.

5. To visualize the transformation results, we provide an Integrator which is capable of
presenting integrated model triples visually:
(a) Navigate to the instances/Test0.java or ../Test1.java folder.
(b) The previously applied forward (backward) transformations created appropriate

models with a FWD (BWD) flag.
(c) Right-click on one of the *_corr_*.xmi files and select eMoflon  Start

Integrator.
(d) A new window opens where the integration result is visible:

a. The left-hand side denotes source domain model (Java source code AST).
b. The top row represents the target domain model (FlowGraph instance).
c. The connections in the center denote the correspondence domain model

(traceability).
(e) Drag and drop the appropriate *_protocol_*.xmi into this view.

(f) You can now navigate back and forth through the transformation history by using the
ALT + arrow keys. Here you can follow the actual transformation process, i.e., see at
which point which elements are selected for transformation (blue), which elements
are pending due to missing context dependencies (yellow) and which elements are
successfully processed (grey). In the opposite domain, newly created elements are
marked green.

	eMoflon@TTC2013: Integrating Java Source Code with FlowGraph Models

