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Specifying and using a TGG can be separated into two distinct steps:

6] Specify the model integration on the metamodel level
(ii) Actually apply the derived forward/backward model transformation to an existing
input model

In the following, both steps are briefly described to demonstrate, from a user’s point of view, how
bidirectional model transformation with TGGs can be achieved with eMoflon.

This introduction is by no means a complete introduction to TGGs or our tool eMoflon. If you are
interested in additional details regarding eMoflon and its capabilities regarding metamodeling
and (uni-/bidirectional) model transformations we refer to our extensive tutorial:
www.emoflon.org

(i) Specifying a TGG and deriving the unidirectional operational rules

1. Start Eclipse (the workspace is already preconfigured).

2. Explore the Eclipse workspace:

a. Project Specification contains the metamodels and the TGG specification.

b. Projects ClassDiagramLanguage, ClassDiagramToRDBMSIntegration,
RDBMSLanguage are placeholders for the language definitions that will be
generated from the specified metamodels and TGG.

3. Open the Specification.eap file by double-clicking it

a. Enterprise Architect Lite (EA) opens and allows viewing all details of the
metamodels and TGG specification in a read-only fashion.

b. Explore the metamodels which define the relevant structures for the integration.

c. Explore the integration rules by navigating to the Rules package in the
ClassDiagramToRDBMSIntegration folder. Here you will find all TGG rules
that have been defined to integrate instances of the ClassDiagram- and
RDBMSLanguage.

4. As eMoflon is a fully generative approach, you have to export all information from EA to
the Eclipse workspace where code generation will be performed: Right-click on any of the
elements and select Extensions > MOFLON::Ecore Addin > Export All to
Workspace.
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(ii)

Return to Eclipse and optionally check that all gen and src folders are empty.
Refresh Specification (select Refresh from the context menu). The workspace
should now start building automatically.
During the automatic build process, two Java classes are added to the src folder of
project ClassDiagramToRDBMSIntegration:
a. TGGMain.java denotes a complete implementation to run a forward and
backward transformation that complies with the specified TGG rules.
b. Startlntegrator.java denotes a complete implementation to visualize the
results of a transformation run.

Integration user part for applying model integration rules:

Navigate to the ClassDiagramToRDBMSIntegration project and inspect the existing

exemplary input models in the instances folder.

These light-weight models are going to be used as input for forward and backward

transformation.

Right-click on src/TGGMain.java and choose Run As - Java Application (the

corresponding Java source code for executing a model transformation with these input

models was generated automatically).

The transformations are performed and additional models are persisted in the

instances folder.

To visualize the transformation results, we provide an Integrator which is capable of

presenting integrated model triples visually:

(a) Navigate to the instances folder.

(b) The previously applied transformations accepted source.xmi (target.xmi) as
input and created appropriate models with a FWD (BWD) flag.

(c) Right-click on one of the corr_*_xmi files and select eMoflon - Start
Integrator.

(d) A new window opens where the integration result is visible:

a. The left-hand side denotes source domain model.

b. The top row represents the target domain model.

c. The connections in the center denote the correspondence domain model
(traceability).

(e) Drag and drop the appropriate protocol_*.xmi into this view.

(f) You can now navigate back and forth through the transformation history by using the
ALT +arrow keys. Here you can follow the actual transformation process, i.e., see at
which point which elements are selected for transformation (blue), which elements
are pending due to missing context dependencies (yellow) and which elements are
successfully processed (grey). In the opposite domain, newly created elements are
marked green.

Optional: You can create your own input models in the instances folder (either class

diagrams or database schema) and adjust the appropriate lines in the TGGMain class. This

allows you to run your own integration.
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